Overview

Dataset statistics

Number of variables32
Number of observations1121
Missing cells2995
Missing cells (%)8.3%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory265.3 KiB
Average record size in memory242.3 B

Variable types

Text5
Numeric14
Unsupported7
Categorical3
DateTime2
Boolean1

Alerts

GitHub Repo Archived is highly imbalanced (89.8%)Imbalance
category is highly imbalanced (75.3%)Imbalance
Project Homepage has 536 (47.8%) missing valuesMissing
GitHub License Type has 545 (48.6%) missing valuesMissing
GitHub Description has 55 (4.9%) missing valuesMissing
GitHub Organization has 726 (64.8%) missing valuesMissing
GitHub Stars (Log Scale) has 40 (3.6%) missing valuesMissing
GitHub Forks (Log Scale) has 426 (38.0%) missing valuesMissing
GitHub Open Issues (Log Scale) has 667 (59.5%) missing valuesMissing
GitHub Stars is highly skewed (γ1 = 21.38157534)Skewed
GitHub Forks is highly skewed (γ1 = 25.16850093)Skewed
GitHub Subscribers is highly skewed (γ1 = 22.74749218)Skewed
GitHub Network Count is highly skewed (γ1 = 25.16825463)Skewed
total lines of GitHub detected code is highly skewed (γ1 = 23.40119625)Skewed
GitHub Repository ID has unique valuesUnique
Project Repo URL has unique valuesUnique
Date Created has unique valuesUnique
Date Most Recent Commit has unique valuesUnique
Project Landscape Category is an unsupported type, check if it needs cleaning or further analysisUnsupported
GitHub Topics is an unsupported type, check if it needs cleaning or further analysisUnsupported
GitHub Detected Languages is an unsupported type, check if it needs cleaning or further analysisUnsupported
Duration Created to Most Recent Commit is an unsupported type, check if it needs cleaning or further analysisUnsupported
Duration Created to Now is an unsupported type, check if it needs cleaning or further analysisUnsupported
Duration Most Recent Commit to Now is an unsupported type, check if it needs cleaning or further analysisUnsupported
Negative Duration Most Recent Commit to Now is an unsupported type, check if it needs cleaning or further analysisUnsupported
GitHub Stars has 40 (3.6%) zerosZeros
GitHub Forks has 426 (38.0%) zerosZeros
GitHub Subscribers has 47 (4.2%) zerosZeros
GitHub Open Issues has 667 (59.5%) zerosZeros
GitHub Contributors has 28 (2.5%) zerosZeros
GitHub Network Count has 426 (38.0%) zerosZeros
GitHub Stars (Log Scale) has 297 (26.5%) zerosZeros
GitHub Forks (Log Scale) has 165 (14.7%) zerosZeros
GitHub Open Issues (Log Scale) has 127 (11.3%) zerosZeros

Reproduction

Analysis started2023-11-29 00:29:29.992896
Analysis finished2023-11-29 00:29:44.742156
Duration14.75 seconds
Software versionydata-profiling vv4.6.1
Download configurationconfig.json

Variables

Distinct1089
Distinct (%)97.1%
Missing0
Missing (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:44.964372image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length100
Median length65
Mean length14.947368
Min length3

Characters and Unicode

Total characters16756
Distinct characters65
Distinct categories6 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1065 ?
Unique (%)95.0%

Sample

1st rowpandas
2nd rownumpy
3rd rowduckdb
4th rowarrow
5th rowparquet-mr
ValueCountFrequency (%)
single-cell-analysis 8
 
0.7%
single-cell-rna-seq-analysis 7
 
0.6%
single_cell_analysis 7
 
0.6%
singlecellanalysis 4
 
0.4%
singlecell 4
 
0.4%
single-cell-rna-seq 4
 
0.4%
orchestratingsinglecellanalysis 3
 
0.3%
scrna-seq 2
 
0.2%
single-cell-rna-sequencing-analysis 2
 
0.2%
scrnaseq 2
 
0.2%
Other values (1058) 1078
96.2%
2023-11-28T17:29:45.307918image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
e 1432
 
8.5%
l 1352
 
8.1%
s 1250
 
7.5%
i 1011
 
6.0%
a 1003
 
6.0%
n 939
 
5.6%
- 833
 
5.0%
c 772
 
4.6%
o 683
 
4.1%
t 600
 
3.6%
Other values (55) 6881
41.1%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 12268
73.2%
Uppercase Letter 2813
 
16.8%
Dash Punctuation 833
 
5.0%
Connector Punctuation 425
 
2.5%
Decimal Number 397
 
2.4%
Other Punctuation 20
 
0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e 1432
11.7%
l 1352
11.0%
s 1250
10.2%
i 1011
 
8.2%
a 1003
 
8.2%
n 939
 
7.7%
c 772
 
6.3%
o 683
 
5.6%
t 600
 
4.9%
r 568
 
4.6%
Other values (16) 2658
21.7%
Uppercase Letter
ValueCountFrequency (%)
A 432
15.4%
C 393
14.0%
S 378
13.4%
R 227
 
8.1%
N 206
 
7.3%
M 134
 
4.8%
T 131
 
4.7%
P 126
 
4.5%
I 112
 
4.0%
D 101
 
3.6%
Other values (16) 573
20.4%
Decimal Number
ValueCountFrequency (%)
2 151
38.0%
0 97
24.4%
1 67
16.9%
3 22
 
5.5%
9 19
 
4.8%
8 14
 
3.5%
4 10
 
2.5%
7 8
 
2.0%
6 5
 
1.3%
5 4
 
1.0%
Dash Punctuation
ValueCountFrequency (%)
- 833
100.0%
Connector Punctuation
ValueCountFrequency (%)
_ 425
100.0%
Other Punctuation
ValueCountFrequency (%)
. 20
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 15081
90.0%
Common 1675
 
10.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
e 1432
 
9.5%
l 1352
 
9.0%
s 1250
 
8.3%
i 1011
 
6.7%
a 1003
 
6.7%
n 939
 
6.2%
c 772
 
5.1%
o 683
 
4.5%
t 600
 
4.0%
r 568
 
3.8%
Other values (42) 5471
36.3%
Common
ValueCountFrequency (%)
- 833
49.7%
_ 425
25.4%
2 151
 
9.0%
0 97
 
5.8%
1 67
 
4.0%
3 22
 
1.3%
. 20
 
1.2%
9 19
 
1.1%
8 14
 
0.8%
4 10
 
0.6%
Other values (3) 17
 
1.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII 16756
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e 1432
 
8.5%
l 1352
 
8.1%
s 1250
 
7.5%
i 1011
 
6.0%
a 1003
 
6.0%
n 939
 
5.6%
- 833
 
5.0%
c 772
 
4.6%
o 683
 
4.1%
t 600
 
3.6%
Other values (55) 6881
41.1%

GitHub Repository ID
Real number (ℝ)

UNIQUE 

Distinct1121
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2.839268 × 108
Minimum858127
Maximum7.2151952 × 108
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:45.406419image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum858127
5-th percentile50261918
Q11.4183365 × 108
median2.5505668 × 108
Q33.9224795 × 108
95-th percentile6.2561219 × 108
Maximum7.2151952 × 108
Range7.2066139 × 108
Interquartile range (IQR)2.504143 × 108

Descriptive statistics

Standard deviation1.7567511 × 108
Coefficient of variation (CV)0.61873381
Kurtosis-0.54298386
Mean2.839268 × 108
Median Absolute Deviation (MAD)1.2265867 × 108
Skewness0.57851496
Sum3.1828194 × 1011
Variance3.0861745 × 1016
MonotonicityNot monotonic
2023-11-28T17:29:45.585654image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
858127 1
 
0.1%
162697103 1
 
0.1%
705254694 1
 
0.1%
504734280 1
 
0.1%
514744648 1
 
0.1%
311841960 1
 
0.1%
290603264 1
 
0.1%
104008503 1
 
0.1%
234948204 1
 
0.1%
599584321 1
 
0.1%
Other values (1111) 1111
99.1%
ValueCountFrequency (%)
858127 1
0.1%
908607 1
0.1%
1571820 1
0.1%
2136580 1
0.1%
2290781 1
0.1%
2425273 1
0.1%
4890816 1
0.1%
5771522 1
0.1%
8678018 1
0.1%
9252402 1
0.1%
ValueCountFrequency (%)
721519518 1
0.1%
719574464 1
0.1%
717731826 1
0.1%
714695155 1
0.1%
713184601 1
0.1%
705254694 1
0.1%
704625957 1
0.1%
704561629 1
0.1%
703064293 1
0.1%
700499845 1
0.1%

Project Homepage
Text

MISSING 

Distinct209
Distinct (%)35.7%
Missing536
Missing (%)47.8%
Memory size8.9 KiB
2023-11-28T17:29:45.795636image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length116
Median length0
Mean length13.94188
Min length0

Characters and Unicode

Total characters8156
Distinct characters65
Distinct categories8 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique207 ?
Unique (%)35.4%

Sample

1st rowhttps://pandas.pydata.org
2nd rowhttps://numpy.org
3rd rowhttp://www.duckdb.org
4th rowhttps://arrow.apache.org/
5th row
ValueCountFrequency (%)
http://nasqar.abudhabi.nyu.edu 2
 
1.0%
https://genocraft.stanford.edu 1
 
0.5%
https://pachterlab.github.io/kallisto 1
 
0.5%
http://www.duckdb.org 1
 
0.5%
https://arrow.apache.org 1
 
0.5%
https://snakemake.readthedocs.io 1
 
0.5%
http://www.satijalab.org/seurat 1
 
0.5%
https://napari.org 1
 
0.5%
https://scanpy.readthedocs.io 1
 
0.5%
http://scvi-tools.org 1
 
0.5%
Other values (198) 198
94.7%
2023-11-28T17:29:46.112188image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
t 770
 
9.4%
/ 739
 
9.1%
s 496
 
6.1%
i 480
 
5.9%
o 468
 
5.7%
. 413
 
5.1%
h 413
 
5.1%
e 411
 
5.0%
a 374
 
4.6%
p 312
 
3.8%
Other values (55) 3280
40.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 6160
75.5%
Other Punctuation 1359
 
16.7%
Decimal Number 293
 
3.6%
Uppercase Letter 201
 
2.5%
Dash Punctuation 124
 
1.5%
Connector Punctuation 17
 
0.2%
Open Punctuation 1
 
< 0.1%
Close Punctuation 1
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
t 770
12.5%
s 496
 
8.1%
i 480
 
7.8%
o 468
 
7.6%
h 413
 
6.7%
e 411
 
6.7%
a 374
 
6.1%
p 312
 
5.1%
c 297
 
4.8%
r 293
 
4.8%
Other values (16) 1846
30.0%
Uppercase Letter
ValueCountFrequency (%)
C 29
14.4%
S 27
13.4%
A 23
11.4%
R 16
 
8.0%
M 11
 
5.5%
T 10
 
5.0%
D 9
 
4.5%
O 9
 
4.5%
I 9
 
4.5%
N 9
 
4.5%
Other values (12) 49
24.4%
Decimal Number
ValueCountFrequency (%)
1 64
21.8%
0 59
20.1%
2 42
14.3%
3 23
 
7.8%
4 22
 
7.5%
6 19
 
6.5%
8 17
 
5.8%
7 16
 
5.5%
9 16
 
5.5%
5 15
 
5.1%
Other Punctuation
ValueCountFrequency (%)
/ 739
54.4%
. 413
30.4%
: 207
 
15.2%
Dash Punctuation
ValueCountFrequency (%)
- 124
100.0%
Connector Punctuation
ValueCountFrequency (%)
_ 17
100.0%
Open Punctuation
ValueCountFrequency (%)
( 1
100.0%
Close Punctuation
ValueCountFrequency (%)
) 1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 6361
78.0%
Common 1795
 
22.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
t 770
 
12.1%
s 496
 
7.8%
i 480
 
7.5%
o 468
 
7.4%
h 413
 
6.5%
e 411
 
6.5%
a 374
 
5.9%
p 312
 
4.9%
c 297
 
4.7%
r 293
 
4.6%
Other values (38) 2047
32.2%
Common
ValueCountFrequency (%)
/ 739
41.2%
. 413
23.0%
: 207
 
11.5%
- 124
 
6.9%
1 64
 
3.6%
0 59
 
3.3%
2 42
 
2.3%
3 23
 
1.3%
4 22
 
1.2%
6 19
 
1.1%
Other values (7) 83
 
4.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII 8156
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
t 770
 
9.4%
/ 739
 
9.1%
s 496
 
6.1%
i 480
 
5.9%
o 468
 
5.7%
. 413
 
5.1%
h 413
 
5.1%
e 411
 
5.0%
a 374
 
4.6%
p 312
 
3.8%
Other values (55) 3280
40.2%

Project Repo URL
Text

UNIQUE 

Distinct1121
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:46.344596image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length134
Median length90
Mean length45.074933
Min length28

Characters and Unicode

Total characters50529
Distinct characters67
Distinct categories6 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1121 ?
Unique (%)100.0%

Sample

1st rowhttps://github.com/pandas-dev/pandas
2nd rowhttps://github.com/numpy/numpy
3rd rowhttps://github.com/duckdb/duckdb
4th rowhttps://github.com/apache/arrow
5th rowhttps://github.com/apache/parquet-mr
ValueCountFrequency (%)
https://github.com/pandas-dev/pandas 1
 
0.1%
https://github.com/scverse/scanpy 1
 
0.1%
https://github.com/apache/arrow 1
 
0.1%
https://github.com/apache/parquet-mr 1
 
0.1%
https://github.com/snakemake/snakemake 1
 
0.1%
https://github.com/satijalab/seurat 1
 
0.1%
https://github.com/napari/napari 1
 
0.1%
https://github.com/chris-mcginnis-ucsf/doubletfinder 1
 
0.1%
https://github.com/theislab/single-cell-tutorial 1
 
0.1%
https://github.com/sqjin/cellchat 1
 
0.1%
Other values (1111) 1111
99.1%
2023-11-28T17:29:46.662862image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
/ 4484
 
8.9%
t 4372
 
8.7%
i 3019
 
6.0%
s 2924
 
5.8%
h 2806
 
5.6%
o 2418
 
4.8%
c 2291
 
4.5%
a 2201
 
4.4%
e 2188
 
4.3%
l 1919
 
3.8%
Other values (57) 21907
43.4%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 37794
74.8%
Other Punctuation 6746
 
13.4%
Uppercase Letter 3743
 
7.4%
Dash Punctuation 1089
 
2.2%
Decimal Number 732
 
1.4%
Connector Punctuation 425
 
0.8%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
t 4372
 
11.6%
i 3019
 
8.0%
s 2924
 
7.7%
h 2806
 
7.4%
o 2418
 
6.4%
c 2291
 
6.1%
a 2201
 
5.8%
e 2188
 
5.8%
l 1919
 
5.1%
g 1818
 
4.8%
Other values (16) 11838
31.3%
Uppercase Letter
ValueCountFrequency (%)
A 481
12.9%
C 465
12.4%
S 453
12.1%
R 251
 
6.7%
N 236
 
6.3%
M 196
 
5.2%
L 180
 
4.8%
T 177
 
4.7%
I 156
 
4.2%
P 155
 
4.1%
Other values (16) 993
26.5%
Decimal Number
ValueCountFrequency (%)
2 196
26.8%
0 151
20.6%
1 126
17.2%
9 54
 
7.4%
3 46
 
6.3%
8 42
 
5.7%
4 36
 
4.9%
7 32
 
4.4%
5 26
 
3.6%
6 23
 
3.1%
Other Punctuation
ValueCountFrequency (%)
/ 4484
66.5%
. 1141
 
16.9%
: 1121
 
16.6%
Dash Punctuation
ValueCountFrequency (%)
- 1089
100.0%
Connector Punctuation
ValueCountFrequency (%)
_ 425
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 41537
82.2%
Common 8992
 
17.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
t 4372
 
10.5%
i 3019
 
7.3%
s 2924
 
7.0%
h 2806
 
6.8%
o 2418
 
5.8%
c 2291
 
5.5%
a 2201
 
5.3%
e 2188
 
5.3%
l 1919
 
4.6%
g 1818
 
4.4%
Other values (42) 15581
37.5%
Common
ValueCountFrequency (%)
/ 4484
49.9%
. 1141
 
12.7%
: 1121
 
12.5%
- 1089
 
12.1%
_ 425
 
4.7%
2 196
 
2.2%
0 151
 
1.7%
1 126
 
1.4%
9 54
 
0.6%
3 46
 
0.5%
Other values (5) 159
 
1.8%

Most occurring blocks

ValueCountFrequency (%)
ASCII 50529
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
/ 4484
 
8.9%
t 4372
 
8.7%
i 3019
 
6.0%
s 2924
 
5.8%
h 2806
 
5.6%
o 2418
 
4.8%
c 2291
 
4.5%
a 2201
 
4.4%
e 2188
 
4.3%
l 1919
 
3.8%
Other values (57) 21907
43.4%

Project Landscape Category
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

GitHub Stars
Real number (ℝ)

SKEWED  ZEROS 

Distinct161
Distinct (%)14.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean121.61106
Minimum0
Maximum40456
Zeros40
Zeros (%)3.6%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:46.760027image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q11
median3
Q317
95-th percentile197
Maximum40456
Range40456
Interquartile range (IQR)16

Descriptive statistics

Standard deviation1529.0813
Coefficient of variation (CV)12.573538
Kurtosis504.31912
Mean121.61106
Median Absolute Deviation (MAD)2
Skewness21.381575
Sum136326
Variance2338089.7
MonotonicityDecreasing
2023-11-28T17:29:46.840753image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
1 297
26.5%
2 136
 
12.1%
3 89
 
7.9%
4 68
 
6.1%
5 42
 
3.7%
0 40
 
3.6%
6 28
 
2.5%
7 22
 
2.0%
8 20
 
1.8%
9 18
 
1.6%
Other values (151) 361
32.2%
ValueCountFrequency (%)
0 40
 
3.6%
1 297
26.5%
2 136
12.1%
3 89
 
7.9%
4 68
 
6.1%
5 42
 
3.7%
6 28
 
2.5%
7 22
 
2.0%
8 20
 
1.8%
9 18
 
1.6%
ValueCountFrequency (%)
40456 1
0.1%
25080 1
0.1%
13165 1
0.1%
12804 1
0.1%
2230 1
0.1%
1990 1
0.1%
1987 1
0.1%
1953 1
0.1%
1645 1
0.1%
1623 1
0.1%

GitHub Forks
Real number (ℝ)

SKEWED  ZEROS 

Distinct96
Distinct (%)8.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean39.633363
Minimum0
Maximum16945
Zeros426
Zeros (%)38.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:46.916887image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1
Q36
95-th percentile54
Maximum16945
Range16945
Interquartile range (IQR)6

Descriptive statistics

Standard deviation582.05691
Coefficient of variation (CV)14.686034
Kurtosis683.54322
Mean39.633363
Median Absolute Deviation (MAD)1
Skewness25.168501
Sum44429
Variance338790.25
MonotonicityNot monotonic
2023-11-28T17:29:46.997358image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 426
38.0%
1 165
 
14.7%
2 107
 
9.5%
3 59
 
5.3%
4 44
 
3.9%
5 36
 
3.2%
6 25
 
2.2%
8 24
 
2.1%
7 20
 
1.8%
9 15
 
1.3%
Other values (86) 200
17.8%
ValueCountFrequency (%)
0 426
38.0%
1 165
 
14.7%
2 107
 
9.5%
3 59
 
5.3%
4 44
 
3.9%
5 36
 
3.2%
6 25
 
2.2%
7 20
 
1.8%
8 24
 
2.1%
9 15
 
1.3%
ValueCountFrequency (%)
16945 1
0.1%
8845 1
0.1%
3140 1
0.1%
1341 1
0.1%
1223 1
0.1%
851 1
0.1%
543 1
0.1%
479 1
0.1%
478 1
0.1%
430 1
0.1%

GitHub Subscribers
Real number (ℝ)

SKEWED  ZEROS 

Distinct47
Distinct (%)4.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean6.2604817
Minimum0
Maximum1122
Zeros47
Zeros (%)4.2%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:47.072132image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q11
median2
Q34
95-th percentile15
Maximum1122
Range1122
Interquartile range (IQR)3

Descriptive statistics

Standard deviation40.10947
Coefficient of variation (CV)6.4067706
Kurtosis581.58219
Mean6.2604817
Median Absolute Deviation (MAD)1
Skewness22.747492
Sum7018
Variance1608.7696
MonotonicityNot monotonic
2023-11-28T17:29:47.144500image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=47)
ValueCountFrequency (%)
1 360
32.1%
2 252
22.5%
3 113
 
10.1%
4 75
 
6.7%
0 47
 
4.2%
5 46
 
4.1%
6 41
 
3.7%
7 34
 
3.0%
8 24
 
2.1%
9 20
 
1.8%
Other values (37) 109
 
9.7%
ValueCountFrequency (%)
0 47
 
4.2%
1 360
32.1%
2 252
22.5%
3 113
 
10.1%
4 75
 
6.7%
5 46
 
4.1%
6 41
 
3.7%
7 34
 
3.0%
8 24
 
2.1%
9 20
 
1.8%
ValueCountFrequency (%)
1122 1
0.1%
596 1
0.1%
351 1
0.1%
159 1
0.1%
95 1
0.1%
87 1
0.1%
79 1
0.1%
54 1
0.1%
52 1
0.1%
49 1
0.1%

GitHub Open Issues
Real number (ℝ)

ZEROS 

Distinct77
Distinct (%)6.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean18.791258
Minimum0
Maximum4075
Zeros667
Zeros (%)59.5%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:47.216705image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q32
95-th percentile33
Maximum4075
Range4075
Interquartile range (IQR)2

Descriptive statistics

Standard deviation184.07387
Coefficient of variation (CV)9.7957183
Kurtosis358.75184
Mean18.791258
Median Absolute Deviation (MAD)0
Skewness18.083082
Sum21065
Variance33883.189
MonotonicityNot monotonic
2023-11-28T17:29:47.295752image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 667
59.5%
1 127
 
11.3%
2 52
 
4.6%
3 33
 
2.9%
4 31
 
2.8%
6 21
 
1.9%
7 16
 
1.4%
5 14
 
1.2%
8 12
 
1.1%
19 8
 
0.7%
Other values (67) 140
 
12.5%
ValueCountFrequency (%)
0 667
59.5%
1 127
 
11.3%
2 52
 
4.6%
3 33
 
2.9%
4 31
 
2.8%
5 14
 
1.2%
6 21
 
1.9%
7 16
 
1.4%
8 12
 
1.1%
9 7
 
0.6%
ValueCountFrequency (%)
4075 1
0.1%
3617 1
0.1%
2189 1
0.1%
1045 1
0.1%
921 1
0.1%
727 1
0.1%
540 1
0.1%
435 1
0.1%
375 1
0.1%
310 1
0.1%

GitHub Contributors
Real number (ℝ)

ZEROS 

Distinct39
Distinct (%)3.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean4.6503122
Minimum0
Maximum433
Zeros28
Zeros (%)2.5%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:47.369860image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q11
median1
Q33
95-th percentile10
Maximum433
Range433
Interquartile range (IQR)2

Descriptive statistics

Standard deviation25.631505
Coefficient of variation (CV)5.5117815
Kurtosis186.6691
Mean4.6503122
Median Absolute Deviation (MAD)0
Skewness13.069769
Sum5213
Variance656.97404
MonotonicityNot monotonic
2023-11-28T17:29:47.438550image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=39)
ValueCountFrequency (%)
1 657
58.6%
2 141
 
12.6%
3 99
 
8.8%
4 62
 
5.5%
5 31
 
2.8%
0 28
 
2.5%
6 17
 
1.5%
11 11
 
1.0%
7 10
 
0.9%
9 9
 
0.8%
Other values (29) 56
 
5.0%
ValueCountFrequency (%)
0 28
 
2.5%
1 657
58.6%
2 141
 
12.6%
3 99
 
8.8%
4 62
 
5.5%
5 31
 
2.8%
6 17
 
1.5%
7 10
 
0.9%
8 8
 
0.7%
9 9
 
0.8%
ValueCountFrequency (%)
433 1
0.1%
412 1
0.1%
370 1
0.1%
282 1
0.1%
260 1
0.1%
192 1
0.1%
149 1
0.1%
128 1
0.1%
88 1
0.1%
82 1
0.1%

GitHub License Type
Categorical

MISSING 

Distinct15
Distinct (%)2.6%
Missing545
Missing (%)48.6%
Memory size8.9 KiB
MIT
215 
GPL-3.0
164 
NOASSERTION
75 
BSD-3-Clause
47 
Apache-2.0
28 
Other values (10)
47 

Length

Max length18
Median length12
Mean length6.7065972
Min length3

Characters and Unicode

Total characters3863
Distinct characters36
Distinct categories5 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique4 ?
Unique (%)0.7%

Sample

1st rowBSD-3-Clause
2nd rowBSD-3-Clause
3rd rowMIT
4th rowApache-2.0
5th rowApache-2.0

Common Values

ValueCountFrequency (%)
MIT 215
 
19.2%
GPL-3.0 164
 
14.6%
NOASSERTION 75
 
6.7%
BSD-3-Clause 47
 
4.2%
Apache-2.0 28
 
2.5%
CC0-1.0 13
 
1.2%
AGPL-3.0 9
 
0.8%
BSD-2-Clause 7
 
0.6%
GPL-2.0 7
 
0.6%
LGPL-3.0 4
 
0.4%
Other values (5) 7
 
0.6%
(Missing) 545
48.6%

Length

2023-11-28T17:29:47.508077image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
mit 215
37.3%
gpl-3.0 164
28.5%
noassertion 75
 
13.0%
bsd-3-clause 47
 
8.2%
apache-2.0 28
 
4.9%
cc0-1.0 13
 
2.3%
agpl-3.0 9
 
1.6%
bsd-2-clause 7
 
1.2%
gpl-2.0 7
 
1.2%
lgpl-3.0 4
 
0.7%
Other values (5) 7
 
1.2%

Most occurring characters

ValueCountFrequency (%)
- 344
 
8.9%
I 290
 
7.5%
T 290
 
7.5%
0 243
 
6.3%
. 230
 
6.0%
3 225
 
5.8%
M 216
 
5.6%
S 205
 
5.3%
L 189
 
4.9%
P 185
 
4.8%
Other values (26) 1446
37.4%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter 2327
60.2%
Decimal Number 528
 
13.7%
Lowercase Letter 434
 
11.2%
Dash Punctuation 344
 
8.9%
Other Punctuation 230
 
6.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
I 290
12.5%
T 290
12.5%
M 216
9.3%
S 205
8.8%
L 189
8.1%
P 185
8.0%
G 184
7.9%
N 150
6.4%
O 150
6.4%
A 113
 
4.9%
Other values (7) 355
15.3%
Lowercase Letter
ValueCountFrequency (%)
e 86
19.8%
a 84
19.4%
l 57
13.1%
s 57
13.1%
u 55
12.7%
c 30
 
6.9%
h 28
 
6.5%
p 28
 
6.5%
i 3
 
0.7%
r 2
 
0.5%
Other values (2) 4
 
0.9%
Decimal Number
ValueCountFrequency (%)
0 243
46.0%
3 225
42.6%
2 44
 
8.3%
1 13
 
2.5%
4 3
 
0.6%
Dash Punctuation
ValueCountFrequency (%)
- 344
100.0%
Other Punctuation
ValueCountFrequency (%)
. 230
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 2761
71.5%
Common 1102
 
28.5%

Most frequent character per script

Latin
ValueCountFrequency (%)
I 290
 
10.5%
T 290
 
10.5%
M 216
 
7.8%
S 205
 
7.4%
L 189
 
6.8%
P 185
 
6.7%
G 184
 
6.7%
N 150
 
5.4%
O 150
 
5.4%
A 113
 
4.1%
Other values (19) 789
28.6%
Common
ValueCountFrequency (%)
- 344
31.2%
0 243
22.1%
. 230
20.9%
3 225
20.4%
2 44
 
4.0%
1 13
 
1.2%
4 3
 
0.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII 3863
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
- 344
 
8.9%
I 290
 
7.5%
T 290
 
7.5%
0 243
 
6.3%
. 230
 
6.0%
3 225
 
5.8%
M 216
 
5.6%
S 205
 
5.3%
L 189
 
4.9%
P 185
 
4.8%
Other values (26) 1446
37.4%

GitHub Description
Text

MISSING 

Distinct1054
Distinct (%)98.9%
Missing55
Missing (%)4.9%
Memory size8.9 KiB
2023-11-28T17:29:47.689452image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length10997
Median length339
Mean length131.58724
Min length7

Characters and Unicode

Total characters140272
Distinct characters109
Distinct categories16 ?
Distinct scripts5 ?
Distinct blocks6 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1042 ?
Unique (%)97.7%

Sample

1st rowFlexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
2nd rowThe fundamental package for scientific computing with Python.
3rd rowDuckDB is an in-process SQL OLAP Database Management System
4th rowApache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing
5th rowApache Parquet
ValueCountFrequency (%)
analysis 943
 
4.8%
of 770
 
3.9%
and 656
 
3.3%
for 651
 
3.3%
the 636
 
3.2%
cell 509
 
2.6%
single-cell 473
 
2.4%
data 448
 
2.3%
single 391
 
2.0%
a 354
 
1.8%
Other values (3933) 13821
70.3%
2023-11-28T17:29:47.979447image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
18766
13.4%
e 12404
 
8.8%
a 9762
 
7.0%
i 9625
 
6.9%
n 8673
 
6.2%
s 8562
 
6.1%
l 8141
 
5.8%
o 7743
 
5.5%
t 7692
 
5.5%
r 6048
 
4.3%
Other values (99) 42856
30.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 109323
77.9%
Space Separator 18766
 
13.4%
Uppercase Letter 6987
 
5.0%
Other Punctuation 2128
 
1.5%
Dash Punctuation 1289
 
0.9%
Decimal Number 1181
 
0.8%
Close Punctuation 228
 
0.2%
Open Punctuation 223
 
0.2%
Math Symbol 51
 
< 0.1%
Final Punctuation 40
 
< 0.1%
Other values (6) 56
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e 12404
11.3%
a 9762
 
8.9%
i 9625
 
8.8%
n 8673
 
7.9%
s 8562
 
7.8%
l 8141
 
7.4%
o 7743
 
7.1%
t 7692
 
7.0%
r 6048
 
5.5%
c 4854
 
4.4%
Other values (19) 25819
23.6%
Uppercase Letter
ValueCountFrequency (%)
A 1096
15.7%
S 766
11.0%
R 712
10.2%
C 700
10.0%
N 596
8.5%
T 396
 
5.7%
D 346
 
5.0%
P 323
 
4.6%
I 312
 
4.5%
M 278
 
4.0%
Other values (16) 1462
20.9%
Other Punctuation
ValueCountFrequency (%)
. 883
41.5%
, 620
29.1%
: 175
 
8.2%
/ 160
 
7.5%
" 157
 
7.4%
% 40
 
1.9%
' 36
 
1.7%
; 19
 
0.9%
& 13
 
0.6%
@ 7
 
0.3%
Other values (4) 18
 
0.8%
Other Symbol
ValueCountFrequency (%)
6
37.5%
🌸 1
 
6.2%
🐟 1
 
6.2%
🏔 1
 
6.2%
🌍 1
 
6.2%
🍱 1
 
6.2%
🍣 1
 
6.2%
🧬 1
 
6.2%
🦀 1
 
6.2%
🧫 1
 
6.2%
Decimal Number
ValueCountFrequency (%)
2 262
22.2%
0 255
21.6%
1 202
17.1%
3 87
 
7.4%
9 84
 
7.1%
5 70
 
5.9%
7 69
 
5.8%
4 61
 
5.2%
8 47
 
4.0%
6 44
 
3.7%
Math Symbol
ValueCountFrequency (%)
= 22
43.1%
+ 15
29.4%
> 9
17.6%
< 4
 
7.8%
~ 1
 
2.0%
Dash Punctuation
ValueCountFrequency (%)
- 1288
99.9%
1
 
0.1%
Close Punctuation
ValueCountFrequency (%)
) 225
98.7%
] 3
 
1.3%
Open Punctuation
ValueCountFrequency (%)
( 220
98.7%
[ 3
 
1.3%
Final Punctuation
ValueCountFrequency (%)
32
80.0%
8
 
20.0%
Space Separator
ValueCountFrequency (%)
18766
100.0%
Connector Punctuation
ValueCountFrequency (%)
_ 29
100.0%
Initial Punctuation
ValueCountFrequency (%)
8
100.0%
Nonspacing Mark
ValueCountFrequency (%)
1
100.0%
Other Letter
ValueCountFrequency (%)
1
100.0%
Currency Symbol
ValueCountFrequency (%)
$ 1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 116309
82.9%
Common 23960
 
17.1%
Inherited 1
 
< 0.1%
Han 1
 
< 0.1%
Greek 1
 
< 0.1%

Most frequent character per script

Latin
ValueCountFrequency (%)
e 12404
 
10.7%
a 9762
 
8.4%
i 9625
 
8.3%
n 8673
 
7.5%
s 8562
 
7.4%
l 8141
 
7.0%
o 7743
 
6.7%
t 7692
 
6.6%
r 6048
 
5.2%
c 4854
 
4.2%
Other values (44) 32805
28.2%
Common
ValueCountFrequency (%)
18766
78.3%
- 1288
 
5.4%
. 883
 
3.7%
, 620
 
2.6%
2 262
 
1.1%
0 255
 
1.1%
) 225
 
0.9%
( 220
 
0.9%
1 202
 
0.8%
: 175
 
0.7%
Other values (42) 1064
 
4.4%
Inherited
ValueCountFrequency (%)
1
100.0%
Han
ValueCountFrequency (%)
1
100.0%
Greek
ValueCountFrequency (%)
α 1
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII 140201
99.9%
Punctuation 49
 
< 0.1%
None 14
 
< 0.1%
Geometric Shapes 6
 
< 0.1%
VS 1
 
< 0.1%
CJK 1
 
< 0.1%

Most frequent character per block

ASCII
ValueCountFrequency (%)
18766
13.4%
e 12404
 
8.8%
a 9762
 
7.0%
i 9625
 
6.9%
n 8673
 
6.2%
s 8562
 
6.1%
l 8141
 
5.8%
o 7743
 
5.5%
t 7692
 
5.5%
r 6048
 
4.3%
Other values (79) 42785
30.5%
Punctuation
ValueCountFrequency (%)
32
65.3%
8
 
16.3%
8
 
16.3%
1
 
2.0%
Geometric Shapes
ValueCountFrequency (%)
6
100.0%
None
ValueCountFrequency (%)
ü 2
14.3%
🌸 1
 
7.1%
🐟 1
 
7.1%
🏔 1
 
7.1%
🌍 1
 
7.1%
🍱 1
 
7.1%
🍣 1
 
7.1%
🧬 1
 
7.1%
é 1
 
7.1%
🦀 1
 
7.1%
Other values (3) 3
21.4%
VS
ValueCountFrequency (%)
1
100.0%
CJK
ValueCountFrequency (%)
1
100.0%

GitHub Topics
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

GitHub Organization
Text

MISSING 

Distinct265
Distinct (%)67.1%
Missing726
Missing (%)64.8%
Memory size8.9 KiB
2023-11-28T17:29:48.233664image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Length

Max length35
Median length27
Mean length11.458228
Min length3

Characters and Unicode

Total characters4526
Distinct characters57
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique205 ?
Unique (%)51.9%

Sample

1st rowpandas-dev
2nd rownumpy
3rd rowduckdb
4th rowapache
5th rowapache
ValueCountFrequency (%)
theislab 13
 
3.3%
ucdavis-bioinformatics-training 9
 
2.3%
teichlab 8
 
2.0%
broadinstitute 7
 
1.8%
scverse 6
 
1.5%
cytomining 5
 
1.3%
kharchenkolab 5
 
1.3%
oshlack 5
 
1.3%
immunogenomics 5
 
1.3%
icbi-lab 5
 
1.3%
Other values (255) 327
82.8%
2023-11-28T17:29:48.571247image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 480
 
10.6%
i 362
 
8.0%
e 325
 
7.2%
b 295
 
6.5%
l 283
 
6.3%
n 276
 
6.1%
o 258
 
5.7%
s 252
 
5.6%
r 208
 
4.6%
c 195
 
4.3%
Other values (47) 1592
35.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 3894
86.0%
Uppercase Letter 459
 
10.1%
Dash Punctuation 158
 
3.5%
Decimal Number 15
 
0.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a 480
12.3%
i 362
 
9.3%
e 325
 
8.3%
b 295
 
7.6%
l 283
 
7.3%
n 276
 
7.1%
o 258
 
6.6%
s 252
 
6.5%
r 208
 
5.3%
c 195
 
5.0%
Other values (16) 960
24.7%
Uppercase Letter
ValueCountFrequency (%)
L 73
15.9%
C 46
 
10.0%
B 45
 
9.8%
S 34
 
7.4%
M 32
 
7.0%
I 30
 
6.5%
G 22
 
4.8%
T 21
 
4.6%
R 18
 
3.9%
A 18
 
3.9%
Other values (14) 120
26.1%
Decimal Number
ValueCountFrequency (%)
1 4
26.7%
0 4
26.7%
2 3
20.0%
4 2
13.3%
9 1
 
6.7%
3 1
 
6.7%
Dash Punctuation
ValueCountFrequency (%)
- 158
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 4353
96.2%
Common 173
 
3.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
a 480
 
11.0%
i 362
 
8.3%
e 325
 
7.5%
b 295
 
6.8%
l 283
 
6.5%
n 276
 
6.3%
o 258
 
5.9%
s 252
 
5.8%
r 208
 
4.8%
c 195
 
4.5%
Other values (40) 1419
32.6%
Common
ValueCountFrequency (%)
- 158
91.3%
1 4
 
2.3%
0 4
 
2.3%
2 3
 
1.7%
4 2
 
1.2%
9 1
 
0.6%
3 1
 
0.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII 4526
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a 480
 
10.6%
i 362
 
8.0%
e 325
 
7.2%
b 295
 
6.5%
l 283
 
6.3%
n 276
 
6.1%
o 258
 
5.7%
s 252
 
5.6%
r 208
 
4.6%
c 195
 
4.3%
Other values (47) 1592
35.2%

GitHub Network Count
Real number (ℝ)

SKEWED  ZEROS 

Distinct97
Distinct (%)8.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean39.695807
Minimum0
Maximum16945
Zeros426
Zeros (%)38.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:48.669048image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1
Q36
95-th percentile55
Maximum16945
Range16945
Interquartile range (IQR)6

Descriptive statistics

Standard deviation582.05633
Coefficient of variation (CV)14.662917
Kurtosis683.53513
Mean39.695807
Median Absolute Deviation (MAD)1
Skewness25.168255
Sum44499
Variance338789.57
MonotonicityNot monotonic
2023-11-28T17:29:48.745611image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 426
38.0%
1 164
 
14.6%
2 107
 
9.5%
3 59
 
5.3%
4 44
 
3.9%
5 36
 
3.2%
6 25
 
2.2%
8 24
 
2.1%
7 19
 
1.7%
9 16
 
1.4%
Other values (87) 201
17.9%
ValueCountFrequency (%)
0 426
38.0%
1 164
 
14.6%
2 107
 
9.5%
3 59
 
5.3%
4 44
 
3.9%
5 36
 
3.2%
6 25
 
2.2%
7 19
 
1.7%
8 24
 
2.1%
9 16
 
1.4%
ValueCountFrequency (%)
16945 1
0.1%
8845 1
0.1%
3140 1
0.1%
1341 1
0.1%
1223 1
0.1%
851 1
0.1%
543 1
0.1%
479 1
0.1%
478 1
0.1%
430 1
0.1%

GitHub Detected Languages
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

Date Created
Date

UNIQUE 

Distinct1121
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size8.9 KiB
Minimum2010-08-24 01:37:33+00:00
Maximum2023-11-21 08:26:43+00:00
2023-11-28T17:29:48.823660image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:48.898052image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Distinct1121
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size8.9 KiB
Minimum2013-03-09 23:45:10+00:00
Maximum2023-11-28 23:41:39+00:00
2023-11-28T17:29:48.966806image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:49.042787image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

Duration Created to Most Recent Commit
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

Duration Created to Now
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

Duration Most Recent Commit to Now
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

Repository Size (KB)
Real number (ℝ)

Distinct1016
Distinct (%)90.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean78842.229
Minimum1
Maximum2073829
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:49.224216image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile16
Q1749
median10881
Q372368
95-th percentile365804
Maximum2073829
Range2073828
Interquartile range (IQR)71619

Descriptive statistics

Standard deviation196928.54
Coefficient of variation (CV)2.4977546
Kurtosis41.356973
Mean78842.229
Median Absolute Deviation (MAD)10847
Skewness5.6659771
Sum88382139
Variance3.8780851 × 1010
MonotonicityNot monotonic
2023-11-28T17:29:49.299182image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
6 10
 
0.9%
16 7
 
0.6%
24 6
 
0.5%
3 6
 
0.5%
9 5
 
0.4%
26 5
 
0.4%
13 5
 
0.4%
30 4
 
0.4%
22 4
 
0.4%
67 4
 
0.4%
Other values (1006) 1065
95.0%
ValueCountFrequency (%)
1 2
 
0.2%
2 3
 
0.3%
3 6
0.5%
4 3
 
0.3%
5 3
 
0.3%
6 10
0.9%
7 2
 
0.2%
8 3
 
0.3%
9 5
0.4%
10 1
 
0.1%
ValueCountFrequency (%)
2073829 1
0.1%
1971038 1
0.1%
1921765 1
0.1%
1792729 1
0.1%
1590023 1
0.1%
1496132 1
0.1%
1461986 1
0.1%
1447466 1
0.1%
1293566 1
0.1%
1245051 1
0.1%

GitHub Repo Archived
Boolean

IMBALANCE 

Distinct2
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Memory size1.2 KiB
False
1106 
True
 
15
ValueCountFrequency (%)
False 1106
98.7%
True 15
 
1.3%
2023-11-28T17:29:49.359221image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Distinct905
Distinct (%)80.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean3.9164127
Minimum0.019178082
Maximum13.271233
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:49.419112image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0.019178082
5-th percentile0.63835616
Q12.3205479
median3.630137
Q35.3589041
95-th percentile7.8520548
Maximum13.271233
Range13.252055
Interquartile range (IQR)3.0383562

Descriptive statistics

Standard deviation2.268001
Coefficient of variation (CV)0.57910164
Kurtosis0.66876272
Mean3.9164127
Median Absolute Deviation (MAD)1.4657534
Skewness0.70701185
Sum4390.2986
Variance5.1438287
MonotonicityNot monotonic
2023-11-28T17:29:49.498504image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2.816438356 5
 
0.4%
4.279452055 4
 
0.4%
3.334246575 4
 
0.4%
3.895890411 4
 
0.4%
6.369863014 3
 
0.3%
4.843835616 3
 
0.3%
2.169863014 3
 
0.3%
5.517808219 3
 
0.3%
4.04109589 3
 
0.3%
4.654794521 3
 
0.3%
Other values (895) 1086
96.9%
ValueCountFrequency (%)
0.01917808219 1
0.1%
0.03287671233 1
0.1%
0.04383561644 1
0.1%
0.06301369863 1
0.1%
0.07123287671 1
0.1%
0.1205479452 1
0.1%
0.1260273973 2
0.2%
0.1342465753 1
0.1%
0.1506849315 1
0.1%
0.1616438356 1
0.1%
ValueCountFrequency (%)
13.27123288 1
0.1%
13.21643836 1
0.1%
12.65753425 1
0.1%
12.33424658 1
0.1%
12.25753425 1
0.1%
12.19726027 1
0.1%
11.40821918 1
0.1%
11.21917808 1
0.1%
10.7260274 1
0.1%
10.65479452 1
0.1%

Negative Duration Most Recent Commit to Now
Unsupported

REJECTED  UNSUPPORTED 

Missing0
Missing (%)0.0%
Memory size8.9 KiB

category
Categorical

IMBALANCE 

Distinct5
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size1.4 KiB
github-query-result
1003 
adjacent-tools
 
100
relevant-open-source
 
8
microscopy-analysis-tools
 
7
loi-focus
 
3

Length

Max length25
Median length19
Mean length18.571811
Min length9

Characters and Unicode

Total characters20819
Distinct characters23
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowrelevant-open-source
2nd rowrelevant-open-source
3rd rowrelevant-open-source
4th rowrelevant-open-source
5th rowrelevant-open-source

Common Values

ValueCountFrequency (%)
github-query-result 1003
89.5%
adjacent-tools 100
 
8.9%
relevant-open-source 8
 
0.7%
microscopy-analysis-tools 7
 
0.6%
loi-focus 3
 
0.3%

Length

2023-11-28T17:29:49.572913image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2023-11-28T17:29:49.630277image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
ValueCountFrequency (%)
github-query-result 1003
89.5%
adjacent-tools 100
 
8.9%
relevant-open-source 8
 
0.7%
microscopy-analysis-tools 7
 
0.6%
loi-focus 3
 
0.3%

Most occurring characters

ValueCountFrequency (%)
u 3020
14.5%
t 2221
10.7%
- 2139
10.3%
e 2138
10.3%
r 2029
9.7%
s 1142
 
5.5%
l 1128
 
5.4%
i 1020
 
4.9%
y 1017
 
4.9%
g 1003
 
4.8%
Other values (13) 3962
19.0%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 18680
89.7%
Dash Punctuation 2139
 
10.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
u 3020
16.2%
t 2221
11.9%
e 2138
11.4%
r 2029
10.9%
s 1142
 
6.1%
l 1128
 
6.0%
i 1020
 
5.5%
y 1017
 
5.4%
g 1003
 
5.4%
q 1003
 
5.4%
Other values (12) 2959
15.8%
Dash Punctuation
ValueCountFrequency (%)
- 2139
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 18680
89.7%
Common 2139
 
10.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
u 3020
16.2%
t 2221
11.9%
e 2138
11.4%
r 2029
10.9%
s 1142
 
6.1%
l 1128
 
6.0%
i 1020
 
5.5%
y 1017
 
5.4%
g 1003
 
5.4%
q 1003
 
5.4%
Other values (12) 2959
15.8%
Common
ValueCountFrequency (%)
- 2139
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII 20819
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
u 3020
14.5%
t 2221
10.7%
- 2139
10.3%
e 2138
10.3%
r 2029
9.7%
s 1142
 
5.5%
l 1128
 
5.4%
i 1020
 
4.9%
y 1017
 
4.9%
g 1003
 
4.8%
Other values (13) 3962
19.0%

GitHub Stars (Log Scale)
Real number (ℝ)

MISSING  ZEROS 

Distinct160
Distinct (%)14.8%
Missing40
Missing (%)3.6%
Infinite0
Infinite (%)0.0%
Mean1.7924966
Minimum0
Maximum10.60797
Zeros297
Zeros (%)26.5%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:49.701061image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1.3862944
Q32.8903718
95-th percentile5.370638
Maximum10.60797
Range10.60797
Interquartile range (IQR)2.8903718

Descriptive statistics

Standard deviation1.7877632
Coefficient of variation (CV)0.9973593
Kurtosis1.3131191
Mean1.7924966
Median Absolute Deviation (MAD)1.3862944
Skewness1.1406396
Sum1937.6888
Variance3.1960971
MonotonicityDecreasing
2023-11-28T17:29:49.777922image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 297
26.5%
0.6931471806 136
 
12.1%
1.098612289 89
 
7.9%
1.386294361 68
 
6.1%
1.609437912 42
 
3.7%
1.791759469 28
 
2.5%
1.945910149 22
 
2.0%
2.079441542 20
 
1.8%
2.197224577 18
 
1.6%
2.302585093 15
 
1.3%
Other values (150) 346
30.9%
(Missing) 40
 
3.6%
ValueCountFrequency (%)
0 297
26.5%
0.6931471806 136
12.1%
1.098612289 89
 
7.9%
1.386294361 68
 
6.1%
1.609437912 42
 
3.7%
1.791759469 28
 
2.5%
1.945910149 22
 
2.0%
2.079441542 20
 
1.8%
2.197224577 18
 
1.6%
2.302585093 15
 
1.3%
ValueCountFrequency (%)
10.60797024 1
0.1%
10.12982599 1
0.1%
9.485317072 1
0.1%
9.457512901 1
0.1%
7.709756864 1
0.1%
7.595889918 1
0.1%
7.594381243 1
0.1%
7.577121931 1
0.1%
7.405495663 1
0.1%
7.392031568 1
0.1%

total lines of GitHub detected code
Real number (ℝ)

SKEWED 

Distinct1115
Distinct (%)99.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean9843389.8
Minimum101
Maximum2.2291975 × 109
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:49.852400image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum101
5-th percentile6099
Q146684
median204987
Q31622642
95-th percentile33306521
Maximum2.2291975 × 109
Range2.2291974 × 109
Interquartile range (IQR)1575958

Descriptive statistics

Standard deviation76661031
Coefficient of variation (CV)7.7880723
Kurtosis644.12398
Mean9843389.8
Median Absolute Deviation (MAD)191998
Skewness23.401196
Sum1.103444 × 1010
Variance5.8769137 × 1015
MonotonicityNot monotonic
2023-11-28T17:29:49.926610image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
954832 4
 
0.4%
3354 2
 
0.2%
102304 2
 
0.2%
7465 2
 
0.2%
22861512 1
 
0.1%
906018 1
 
0.1%
1419408 1
 
0.1%
212785 1
 
0.1%
30183 1
 
0.1%
35920563 1
 
0.1%
Other values (1105) 1105
98.6%
ValueCountFrequency (%)
101 1
0.1%
397 1
0.1%
508 1
0.1%
547 1
0.1%
587 1
0.1%
695 1
0.1%
968 1
0.1%
1120 1
0.1%
1203 1
0.1%
1346 1
0.1%
ValueCountFrequency (%)
2229197511 1
0.1%
880847605 1
0.1%
463016008 1
0.1%
280960563 1
0.1%
277061560 1
0.1%
232185079 1
0.1%
192917347 1
0.1%
183885622 1
0.1%
182341397 1
0.1%
178105096 1
0.1%
Distinct1115
Distinct (%)99.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean12.589924
Minimum4.6151205
Maximum21.524907
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:49.997635image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum4.6151205
5-th percentile8.7158801
Q110.751157
median12.230702
Q314.299566
95-th percentile17.321264
Maximum21.524907
Range16.909787
Interquartile range (IQR)3.5484095

Descriptive statistics

Standard deviation2.6413136
Coefficient of variation (CV)0.20979584
Kurtosis-0.19287438
Mean12.589924
Median Absolute Deviation (MAD)1.6578988
Skewness0.37880547
Sum14113.304
Variance6.9765376
MonotonicityNot monotonic
2023-11-28T17:29:50.077968image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
13.76929069 4
 
0.4%
8.117908942 2
 
0.2%
11.53570405 2
 
0.2%
8.91798071 2
 
0.2%
16.94496536 1
 
0.1%
13.71681445 1
 
0.1%
14.16575044 1
 
0.1%
12.26803755 1
 
0.1%
10.31503413 1
 
0.1%
17.39682047 1
 
0.1%
Other values (1105) 1105
98.6%
ValueCountFrequency (%)
4.615120517 1
0.1%
5.983936281 1
0.1%
6.230481448 1
0.1%
6.304448802 1
0.1%
6.37502482 1
0.1%
6.543911846 1
0.1%
6.875232087 1
0.1%
7.021083964 1
0.1%
7.092573716 1
0.1%
7.20489251 1
0.1%
ValueCountFrequency (%)
21.5249075 1
0.1%
20.59639519 1
0.1%
19.95327219 1
0.1%
19.45372487 1
0.1%
19.43975028 1
0.1%
19.26304537 1
0.1%
19.0777724 1
0.1%
19.0298245 1
0.1%
19.0213913 1
0.1%
18.99788436 1
0.1%

GitHub Forks (Log Scale)
Real number (ℝ)

MISSING  ZEROS 

Distinct95
Distinct (%)13.7%
Missing426
Missing (%)38.0%
Infinite0
Infinite (%)0.0%
Mean1.6360811
Minimum0
Maximum9.7377281
Zeros165
Zeros (%)14.7%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:50.156024image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10.69314718
median1.3862944
Q32.4849066
95-th percentile4.4693367
Maximum9.7377281
Range9.7377281
Interquartile range (IQR)1.7917595

Descriptive statistics

Standard deviation1.5244072
Coefficient of variation (CV)0.93174307
Kurtosis2.3333338
Mean1.6360811
Median Absolute Deviation (MAD)1.0116009
Skewness1.2492479
Sum1137.0764
Variance2.3238174
MonotonicityNot monotonic
2023-11-28T17:29:50.233107image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 165
 
14.7%
0.6931471806 107
 
9.5%
1.098612289 59
 
5.3%
1.386294361 44
 
3.9%
1.609437912 36
 
3.2%
1.791759469 25
 
2.2%
2.079441542 24
 
2.1%
1.945910149 20
 
1.8%
2.197224577 15
 
1.3%
2.564949357 14
 
1.2%
Other values (85) 186
16.6%
(Missing) 426
38.0%
ValueCountFrequency (%)
0 165
14.7%
0.6931471806 107
9.5%
1.098612289 59
 
5.3%
1.386294361 44
 
3.9%
1.609437912 36
 
3.2%
1.791759469 25
 
2.2%
1.945910149 20
 
1.8%
2.079441542 24
 
2.1%
2.197224577 15
 
1.3%
2.302585093 13
 
1.2%
ValueCountFrequency (%)
9.737728084 1
0.1%
9.087607607 1
0.1%
8.051978079 1
0.1%
7.201170883 1
0.1%
7.109062136 1
0.1%
6.746412129 1
0.1%
6.29710932 1
0.1%
6.171700597 1
0.1%
6.169610732 1
0.1%
6.063785209 1
0.1%

GitHub Open Issues (Log Scale)
Real number (ℝ)

MISSING  ZEROS 

Distinct76
Distinct (%)16.7%
Missing667
Missing (%)59.5%
Infinite0
Infinite (%)0.0%
Mean1.6723702
Minimum0
Maximum8.312626
Zeros127
Zeros (%)11.3%
Negative0
Negative (%)0.0%
Memory size8.9 KiB
2023-11-28T17:29:50.307827image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1.3862944
Q32.7080502
95-th percentile4.5544816
Maximum8.312626
Range8.312626
Interquartile range (IQR)2.7080502

Descriptive statistics

Standard deviation1.6104965
Coefficient of variation (CV)0.96300238
Kurtosis1.3000071
Mean1.6723702
Median Absolute Deviation (MAD)1.3862944
Skewness1.0931026
Sum759.25609
Variance2.593699
MonotonicityNot monotonic
2023-11-28T17:29:50.381468image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 127
 
11.3%
0.6931471806 52
 
4.6%
1.098612289 33
 
2.9%
1.386294361 31
 
2.8%
1.791759469 21
 
1.9%
1.945910149 16
 
1.4%
1.609437912 14
 
1.2%
2.079441542 12
 
1.1%
2.944438979 8
 
0.7%
2.302585093 8
 
0.7%
Other values (66) 132
 
11.8%
(Missing) 667
59.5%
ValueCountFrequency (%)
0 127
11.3%
0.6931471806 52
4.6%
1.098612289 33
 
2.9%
1.386294361 31
 
2.8%
1.609437912 14
 
1.2%
1.791759469 21
 
1.9%
1.945910149 16
 
1.4%
2.079441542 12
 
1.1%
2.197224577 7
 
0.6%
2.302585093 8
 
0.7%
ValueCountFrequency (%)
8.312626026 1
0.1%
8.193400232 1
0.1%
7.691200098 1
0.1%
6.951772164 1
0.1%
6.825460036 1
0.1%
6.588926478 1
0.1%
6.29156914 1
0.1%
6.075346031 1
0.1%
5.926926026 1
0.1%
5.736572297 1
0.1%

Primary language
Categorical

Distinct33
Distinct (%)2.9%
Missing0
Missing (%)0.0%
Memory size8.9 KiB
R
421 
Python
220 
Jupyter Notebook
195 
HTML
117 
MATLAB
50 
Other values (28)
118 

Length

Max length24
Median length17
Mean length5.5976806
Min length1

Characters and Unicode

Total characters6275
Distinct characters48
Distinct categories5 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique14 ?
Unique (%)1.2%

Sample

1st rowPython
2nd rowPython
3rd rowC++
4th rowC++
5th rowJava

Common Values

ValueCountFrequency (%)
R 421
37.6%
Python 220
19.6%
Jupyter Notebook 195
17.4%
HTML 117
 
10.4%
MATLAB 50
 
4.5%
Shell 16
 
1.4%
Java 15
 
1.3%
C++ 15
 
1.3%
JavaScript 9
 
0.8%
Julia 9
 
0.8%
Other values (23) 54
 
4.8%

Length

2023-11-28T17:29:50.449927image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
r 421
31.7%
python 220
16.6%
jupyter 195
14.7%
notebook 195
14.7%
html 117
 
8.8%
matlab 50
 
3.8%
c 22
 
1.7%
shell 16
 
1.2%
java 15
 
1.1%
julia 9
 
0.7%
Other values (29) 66
 
5.0%

Most occurring characters

ValueCountFrequency (%)
o 831
 
13.2%
t 635
 
10.1%
e 439
 
7.0%
R 425
 
6.8%
y 416
 
6.6%
h 237
 
3.8%
J 232
 
3.7%
n 229
 
3.6%
P 228
 
3.6%
r 220
 
3.5%
Other values (38) 2383
38.0%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter 4073
64.9%
Uppercase Letter 1966
31.3%
Space Separator 205
 
3.3%
Math Symbol 30
 
0.5%
Other Punctuation 1
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
o 831
20.4%
t 635
15.6%
e 439
10.8%
y 416
10.2%
h 237
 
5.8%
n 229
 
5.6%
r 220
 
5.4%
u 212
 
5.2%
p 208
 
5.1%
k 200
 
4.9%
Other values (13) 446
11.0%
Uppercase Letter
ValueCountFrequency (%)
R 425
21.6%
J 232
11.8%
P 228
11.6%
N 202
10.3%
T 175
8.9%
M 171
8.7%
L 170
 
8.6%
H 118
 
6.0%
A 102
 
5.2%
B 52
 
2.6%
Other values (12) 91
 
4.6%
Space Separator
ValueCountFrequency (%)
205
100.0%
Math Symbol
ValueCountFrequency (%)
+ 30
100.0%
Other Punctuation
ValueCountFrequency (%)
. 1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin 6039
96.2%
Common 236
 
3.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
o 831
 
13.8%
t 635
 
10.5%
e 439
 
7.3%
R 425
 
7.0%
y 416
 
6.9%
h 237
 
3.9%
J 232
 
3.8%
n 229
 
3.8%
P 228
 
3.8%
r 220
 
3.6%
Other values (35) 2147
35.6%
Common
ValueCountFrequency (%)
205
86.9%
+ 30
 
12.7%
. 1
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII 6275
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
o 831
 
13.2%
t 635
 
10.1%
e 439
 
7.0%
R 425
 
6.8%
y 416
 
6.6%
h 237
 
3.8%
J 232
 
3.7%
n 229
 
3.6%
P 228
 
3.6%
r 220
 
3.5%
Other values (38) 2383
38.0%

Interactions

2023-11-28T17:29:43.589331image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.519629image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.410530image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.181799image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.933426image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.750686image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.519366image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.231903image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.990189image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.806647image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.549805image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.277994image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.005173image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.864130image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.639840image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.690790image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.469249image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.238586image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.987367image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.807854image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.572568image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.289468image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.043891image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.862923image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.607850image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.333697image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.061895image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.919262image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.693480image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.758762image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.527641image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.295628image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.043426image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.867175image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.627550image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.347568image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.100012image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.919670image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.663779image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.389440image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.120503image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.974568image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.743343image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.822879image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.584989image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.350368image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.096441image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.924359image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.680606image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.402717image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.153935image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.975439image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.718780image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.443990image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.176432image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.028548image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.789982image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.875715image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.639588image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.402132image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.145537image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.976829image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.730592image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.456160image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.203139image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.027056image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.768640image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.493883image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.229104image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.077621image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.842438image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.934081image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.698679image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.460023image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.200559image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.034694image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.787472image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.513870image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.258285image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.084750image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.825366image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.550204image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.286867image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.134225image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.888305image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:33.984040image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.750266image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.510646image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.248820image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.085684image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.834236image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.565468image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.405157image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.133560image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.873257image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.597870image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.337828image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.185129image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.938704image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.040974image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.806690image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.567264image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.302300image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.143486image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.887016image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.620391image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.459030image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.189258image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.928266image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.654046image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.393738image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.239988image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.985739image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.092547image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.859636image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.619204image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.448058image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.195563image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.936194image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.673374image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.506147image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.240127image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.977219image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.703039image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.546024image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.288534image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:44.034462image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.147326image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.915549image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.673975image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.500590image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.251478image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.987115image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.727744image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.558228image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.293592image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.030079image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.755117image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.600640image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.340672image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:44.081742image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.198999image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.968324image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.726466image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.550936image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.305385image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.036944image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.780632image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.607594image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.344455image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.078898image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.806146image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.654860image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.389690image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:44.127722image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.252087image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.022113image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.777543image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.601076image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.357701image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.085127image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.832545image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.657844image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.396167image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.129266image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.854537image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.707255image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.439621image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:44.179430image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.308321image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.079526image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.833730image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.655166image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.416504image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.138681image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.889252image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.711273image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.450944image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.182783image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.908882image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.761853image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.495635image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:44.224978image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:34.362245image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.133307image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:35.885292image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:36.704702image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:37.469831image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.187411image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:38.942335image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:39.761724image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:40.502771image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.232916image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:41.958721image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:42.815996image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
2023-11-28T17:29:43.544886image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/

Missing values

2023-11-28T17:29:44.319799image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
A simple visualization of nullity by column.
2023-11-28T17:29:44.539896image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2023-11-28T17:29:44.686024image/svg+xmlMatplotlib v3.7.3, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

Project NameGitHub Repository IDProject HomepageProject Repo URLProject Landscape CategoryGitHub StarsGitHub ForksGitHub SubscribersGitHub Open IssuesGitHub ContributorsGitHub License TypeGitHub DescriptionGitHub TopicsGitHub OrganizationGitHub Network CountGitHub Detected LanguagesDate CreatedDate Most Recent CommitDuration Created to Most Recent CommitDuration Created to NowDuration Most Recent Commit to NowRepository Size (KB)GitHub Repo ArchivedDuration Created to Now in YearsNegative Duration Most Recent Commit to NowcategoryGitHub Stars (Log Scale)total lines of GitHub detected codetotal lines of GitHub detected code (Log Scale)GitHub Forks (Log Scale)GitHub Open Issues (Log Scale)Primary language
0pandas858127https://pandas.pydata.orghttps://github.com/pandas-dev/pandas[cytomining-ecosystem-relevant-open-source]404561694511223617412BSD-3-ClauseFlexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more[alignment, data-analysis, data-science, flexible, pandas, python]pandas-dev16945{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': 364354.0, 'C#': None, 'C++': None, 'CMake': None, 'CSS': 6804.0, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': 1293498.0, 'D': None, 'Dockerfile': 5751.0, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': 457000.0, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': 10725.0, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 20699228.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 14470.0, 'Singularity': None, 'Smarty': 8486.0, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': 1196.0, 'eC': None, 'sed': None}2010-08-24 01:37:33+00:002023-11-28 23:22:02+00:004844 days 21:44:294844 days 22:04:06.3885830 days 00:19:37.388583340201False13.271233-1 days +23:40:22.611417relevant-open-source10.60797022861512.016.9449659.7377288.193400Python
1numpy908607https://numpy.orghttps://github.com/numpy/numpy[cytomining-ecosystem-relevant-open-source]2508088455962189433BSD-3-ClauseThe fundamental package for scientific computing with Python.[numpy, python]numpy8845{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': 6225307.0, 'C#': None, 'C++': 271324.0, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': 164926.0, 'D': 19.0, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': 3787.0, 'Fortran': 29720.0, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': 1697.0, 'Mako': None, 'Mercury': None, 'Meson': 89262.0, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 10542479.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 16810.0, 'Singularity': None, 'Smarty': 4129.0, 'Stan': None, 'Standard ML': None, 'Starlark': 1842.0, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': 5699.0}2010-09-13 23:02:39+00:002023-11-28 21:57:52+00:004823 days 22:55:134824 days 00:39:00.3885830 days 01:43:47.388583135491False13.216438-1 days +22:16:12.611417relevant-open-source10.12982617357001.016.6695069.0876087.691200Python
2duckdb138754790http://www.duckdb.orghttps://github.com/duckdb/duckdb[cytomining-ecosystem-relevant-open-source]131651223159280260MITDuckDB is an in-process SQL OLAP Database Management System[analytics, database, embedded-database, olap, sql]duckdb1223{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': 1768888.0, 'C#': None, 'C++': 34065812.0, 'CMake': 148295.0, 'CSS': 182.0, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': 388945.0, 'JavaScript': 12990.0, 'Jinja': None, 'Julia': 250843.0, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': 15115.0, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 1472723.0, 'QMake': None, 'R': 1693.0, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 28867.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': 282550.0, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-06-26 15:04:45+00:002023-11-28 23:19:11+00:001981 days 08:14:261981 days 08:36:54.3885830 days 00:22:28.388583228261False5.427397-1 days +23:37:31.611417relevant-open-source9.48531738436903.017.4645297.1090625.634790C++
3arrow51905353https://arrow.apache.org/https://github.com/apache/arrow[cytomining-ecosystem-relevant-open-source]1280431403514075370Apache-2.0Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing[arrow]apache3140{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': 3709.0, 'Batchfile': 32824.0, 'C': 1508127.0, 'C#': 1583808.0, 'C++': 27374565.0, 'CMake': 736400.0, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': 1728074.0, 'D': None, 'Dockerfile': 139128.0, 'Emacs Lisp': 1064.0, 'Forth': None, 'Fortran': None, 'FreeMarker': 2312.0, 'Gnuplot': None, 'Go': 5777080.0, 'Groovy': None, 'HCL': None, 'HTML': 5604.0, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': 7617061.0, 'JavaScript': 137865.0, 'Jinja': 22021.0, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': 8771.0, 'M': None, 'M4': None, 'MATLAB': 854595.0, 'Makefile': 32659.0, 'Mako': None, 'Mercury': None, 'Meson': 62865.0, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': 11472.0, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 3325524.0, 'QMake': None, 'R': 1703633.0, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': 1793463.0, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 415249.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': 680567.0, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': 39093.0, 'TypeScript': 1099743.0, 'VBA': None, 'VBScript': None, 'Vala': 24798.0, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': 1256.0}2016-02-17 08:00:23+00:002023-11-28 23:41:36+00:002841 days 15:41:132841 days 15:41:16.3885830 days 00:00:03.388583174923False7.783562-1 days +23:59:56.611417relevant-open-source9.45751356723330.017.8536968.0519788.312626C++
4parquet-mr20675636https://github.com/apache/parquet-mr[cytomining-ecosystem-relevant-open-source]2230134195137192Apache-2.0Apache Parquet[big-data, java, parquet]apache1341{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': 6048043.0, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 14771.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': 8436.0, 'Scheme': None, 'Scilab': None, 'Shell': 14860.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': 10354.0, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2014-06-10 07:00:07+00:002023-11-28 23:31:50+00:003458 days 16:31:433458 days 16:41:32.3885830 days 00:09:49.38858318489False9.473973-1 days +23:50:10.611417relevant-open-source7.7097576096464.015.6232197.2011714.919981Java
5snakemake212840200https://snakemake.readthedocs.iohttps://github.com/snakemake/snakemake[cytomining-ecosystem-relevant-open-source]199047922921282MITThis is the development home of the workflow management system Snakemake. For general information, see[reproducibility, snakemake, workflow-management]snakemake479{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': 1346.0, 'C#': None, 'C++': None, 'CMake': None, 'CSS': 3033.0, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': 1727.0, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': 3647966.0, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': 43973.0, 'Jinja': 6950.0, 'Julia': 334.0, 'Jupyter Notebook': 4389.0, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': 4400.0, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': 5.0, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 1339938.0, 'QMake': None, 'R': 786.0, 'Raku': None, 'Reason': None, 'Rebol': 6.0, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': 6.0, 'Ruby': None, 'Rust': 3617.0, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 5149.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': 5722.0, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2019-10-04 14:58:11+00:002023-11-28 15:33:22+00:001516 days 00:35:111516 days 08:43:28.3885830 days 08:08:17.38858391664False4.153425-1 days +15:51:42.611417relevant-open-source7.5958905069347.015.4387236.1717016.825460HTML
6seurat35927665http://www.satijalab.org/seurathttps://github.com/satijalab/seurat[cytomining-ecosystem-adjacent-tools]19878517928288NOASSERTIONR toolkit for single cell genomics[cran, human-cell-atlas, single-cell-genomics, single-cell-rna-seq]satijalab851{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': 166.0, 'C#': None, 'C++': 103885.0, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': 1528326.0, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 942.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2015-05-20 05:23:02+00:002023-11-28 20:43:37+00:003114 days 15:20:353114 days 18:18:37.3885830 days 02:58:02.38858322924False8.531507-1 days +21:01:57.611417adjacent-tools7.5943811633319.014.3061256.7464125.641907R
7napari144513571https://napari.orghttps://github.com/napari/napari[microscopy-analysis-tools]1953394491045149BSD-3-Clausenapari: a fast, interactive, multi-dimensional image viewer for python[napari, numpy, python, visualization]napari394{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': 465.0, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': 6722.0, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 4689846.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': 2846.0, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 1221.0, 'Singularity': 95.0, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-08-13 01:12:28+00:002023-11-28 23:41:39+00:001933 days 22:29:111933 days 22:29:11.3885830 days 00:00:00.38858377793False5.295890-1 days +23:59:59.611417microscopy-analysis-tools7.5771224701195.015.3633275.9763516.951772Python
8scanpy80342493https://scanpy.readthedocs.iohttps://github.com/scverse/scanpy[cytomining-ecosystem-adjacent-tools]164554352540128BSD-3-ClauseSingle-cell analysis in Python. Scales to >1M cells.[anndata, bioinformatics, data-science, machine-learning, python, scanpy, scverse, transcriptomics, visualize-data]scverse543{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 1331726.0, 'QMake': None, 'R': 2315.0, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2017-01-29 11:31:11+00:002023-11-28 17:59:42+00:002494 days 06:28:312494 days 12:10:28.3885830 days 05:41:57.38858338584False6.832877-1 days +18:18:02.611417adjacent-tools7.4054961334041.014.1037236.2971096.291569Python
9STAR17778869https://github.com/alexdobin/STAR[cytomining-ecosystem-adjacent-tools]16234788772734MITRNA-seq aligner[]None478{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': 24345.0, 'Batchfile': None, 'C': 2350683.0, 'C#': None, 'C++': 1210764.0, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': 676.0, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': 1006.0, 'Makefile': 25383.0, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': 11364.0, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': 295.0, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': 119547.0, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2014-03-15 15:47:05+00:002023-09-08 12:23:35+00:003463 days 20:36:303545 days 07:54:34.38858381 days 11:18:04.388583541229False9.712329-82 days +12:41:55.611417adjacent-tools7.3920323744063.015.1356826.1696116.588926C
Project NameGitHub Repository IDProject HomepageProject Repo URLProject Landscape CategoryGitHub StarsGitHub ForksGitHub SubscribersGitHub Open IssuesGitHub ContributorsGitHub License TypeGitHub DescriptionGitHub TopicsGitHub OrganizationGitHub Network CountGitHub Detected LanguagesDate CreatedDate Most Recent CommitDuration Created to Most Recent CommitDuration Created to NowDuration Most Recent Commit to NowRepository Size (KB)GitHub Repo ArchivedDuration Created to Now in YearsNegative Duration Most Recent Commit to NowcategoryGitHub Stars (Log Scale)total lines of GitHub detected codetotal lines of GitHub detected code (Log Scale)GitHub Forks (Log Scale)GitHub Open Issues (Log Scale)Primary language
1111BloodVesselImageAnalysis323621577https://github.com/RoopaMadhu/BloodVesselImageAnalysis[related-tools-github-query-result]00101NoneSpatiographic projections of biological systems[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': 188297.0, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2020-12-22 12:36:17+00:002020-12-22 14:22:59+00:000 days 01:46:421071 days 11:05:22.3885831071 days 09:18:40.388583576False2.934247-1072 days +14:41:19.611417github-query-resultNaN188297.012.145776NaNNaNMATLAB
1112SickleCellDataAnalysis298584969Nonehttps://github.com/ridz46/SickleCellDataAnalysis[related-tools-github-query-result]00101NoneThis repository contains the codes used for image processing and further downstream data analysis for the project on the development of a point-of-care diagnostic test for sickle cell disease. This repository is maintained by the Microfluidics & Biological Physics group, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': 4373.0, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2020-09-25 13:45:27+00:002020-09-28 08:55:24+00:002 days 19:09:571159 days 09:56:12.3885831156 days 14:46:15.38858317False3.175342-1157 days +09:13:44.611417github-query-resultNaN4373.08.383205NaNNaNR
1113Data-Analysis-AMATH-482245942374Nonehttps://github.com/priyanshir/Data-Analysis-AMATH-482[related-tools-github-query-result]00101NoneExploratory and objective data analysis methods applied to the physical, engineering, and biological sciences. Brief review of statistical methods and their computational implementation for studying time series analysis, spectral analysis, filtering methods, principal component analysis, orthogonal mode decomposition, and image processing and compression[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': 703573.0, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': 33375.0, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2020-03-09 04:17:02+00:002020-03-14 22:41:50+00:005 days 18:24:481359 days 19:24:37.3885831354 days 00:59:49.3885832832False3.723288-1355 days +23:00:10.611417github-query-resultNaN736948.013.510273NaNNaNJupyter Notebook
1114Aging-Cell-Morphology-Cell-transformations-and-image-processing235024426Nonehttps://github.com/sumisingh/Aging-Cell-Morphology-Cell-transformations-and-image-processing[related-tools-github-query-result]00101NoneIdentifying cellular transformations associated with aging using image processing[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': 8130261.0, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2020-01-20 05:18:57+00:002020-01-20 05:29:56+00:000 days 00:10:591408 days 18:22:42.3885831408 days 18:11:43.38858327874False3.857534-1409 days +05:48:16.611417github-query-resultNaN8130261.015.911104NaNNaNJupyter Notebook
1115Cell-virulence-Detection-using-Image-Processing163268436Nonehttps://github.com/arushigupta148/Cell-virulence-Detection-using-Image-Processing[related-tools-github-query-result]00101NoneDesigned an automated tool to find the thickness of multiple cell capsules from images using morphological operations to generate plots of cell size vs capsular thickness, simplifying detection of virulence in yeast cells for mycologists[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 12989.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-12-27 08:27:06+00:002019-05-12 23:09:02+00:00136 days 14:41:561797 days 15:14:33.3885831661 days 00:32:37.3885831751False4.923288-1662 days +23:27:22.611417github-query-resultNaN12989.09.471858NaNNaNPython
1116CellMorphology148259959https://github.com/KnightofDawn/CellMorphology[related-tools-github-query-result]00101NonePython code to identify/analyze cells from microscopic stack images.[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 65906.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-09-11 04:25:09+00:002018-09-10 20:41:28+00:00-1 days +16:16:191904 days 19:16:30.3885831905 days 03:00:11.388583161False5.216438-1906 days +20:59:48.611417github-query-resultNaN65906.011.095985NaNNaNPython
1117ImagingCells137526283Nonehttps://github.com/jesnyder/ImagingCells[related-tools-github-query-result]00101NoneScripts to analyze cell number and morphologies using images.[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': 1523.0, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-06-15 19:50:00+00:002018-08-31 19:21:33+00:0076 days 23:31:331992 days 03:51:39.3885831915 days 04:20:06.3885831False5.457534-1916 days +19:39:53.611417github-query-resultNaN1523.07.328437NaNNaNJupyter Notebook
1118course-bia119301640Nonehttps://github.com/denzf/course-bia[related-tools-github-query-result]00101MITCode examples for the course of Biological Image Analysis[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': None, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': 6010.0, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-01-28 21:58:13+00:002018-01-24 03:22:19+00:00-5 days +05:24:062130 days 01:43:26.3885832134 days 20:19:20.388583203False5.835616-2135 days +03:40:39.611417github-query-resultNaN6010.08.701180NaNNaNPython
1119Image-analysis152904377https://github.com/dguin/Image-analysis[related-tools-github-query-result]00001NoneThe repository contains code to analyze videos where each frame is a snapshot of the cellular status as a function of time. The program includes subroutines for segmentation protocols to pick a cell and differentiate it from the background when the signal to noise is low. The protocol docx explains what each code does and explains the order in which they must be run. As is the program analyzes FRET data from a cell, where the temperature increases as a function of time and one can evaluate the changes in the cell morphology as the cell is under heat stress[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': 40670.0, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-10-13 18:53:42+00:002018-10-13 19:32:22+00:000 days 00:38:401872 days 04:47:57.3885831872 days 04:09:17.38858326False5.128767-1873 days +19:50:42.611417github-query-resultNaN40670.010.613246NaNNaNMATLAB
1120oct-image-analysis125785309https://github.com/ricster101/oct-image-analysis[related-tools-github-query-result]00001NoneWork developed with Adriana Costa during the course of Computer Vision and Biological Perception aiming to discover differences in mice retina[]None0{'AMPL': None, 'AspectJ': None, 'Assembly': None, 'Awk': None, 'Batchfile': None, 'C': None, 'C#': None, 'C++': None, 'CMake': None, 'CSS': None, 'Clojure': None, 'Common Workflow Language': None, 'Cuda': None, 'Cython': None, 'D': None, 'Dockerfile': None, 'Emacs Lisp': None, 'Forth': None, 'Fortran': None, 'FreeMarker': None, 'Gnuplot': None, 'Go': None, 'Groovy': None, 'HCL': None, 'HTML': None, 'Hack': None, 'ImageJ Macro': None, 'Inno Setup': None, 'Java': None, 'JavaScript': None, 'Jinja': None, 'Julia': None, 'Jupyter Notebook': None, 'Kotlin': None, 'Limbo': None, 'Lua': None, 'M': None, 'M4': None, 'MATLAB': 22755.0, 'Makefile': None, 'Mako': None, 'Mercury': None, 'Meson': None, 'Nextflow': None, 'Objective-C': None, 'Objective-C++': None, 'OpenEdge ABL': None, 'PHP': None, 'PLpgSQL': None, 'POV-Ray SDL': None, 'Perl': None, 'Perl 6': None, 'PostScript': None, 'PowerShell': None, 'Processing': None, 'Procfile': None, 'Python': None, 'QMake': None, 'R': None, 'Raku': None, 'Reason': None, 'Rebol': None, 'Ren'Py': None, 'Rich Text Format': None, 'Roff': None, 'Ruby': None, 'Rust': None, 'SCSS': None, 'Scala': None, 'Scheme': None, 'Scilab': None, 'Shell': None, 'Singularity': None, 'Smarty': None, 'Stan': None, 'Standard ML': None, 'Starlark': None, 'Swift': None, 'TSQL': None, 'TeX': None, 'Terra': None, 'Thrift': None, 'TypeScript': None, 'VBA': None, 'VBScript': None, 'Vala': None, 'Vim Script': None, 'Visual Basic .NET': None, 'Vue': None, 'WDL': None, 'XSLT': None, 'eC': None, 'sed': None}2018-03-19 01:29:32+00:002018-03-19 03:31:25+00:000 days 02:01:532080 days 22:12:07.3885832080 days 20:10:14.38858316False5.698630-2081 days +03:49:45.611417github-query-resultNaN22755.010.032540NaNNaNMATLAB